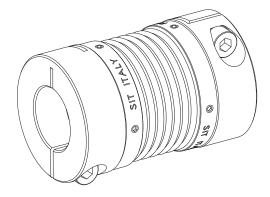


S

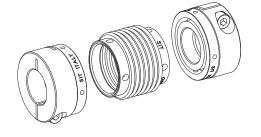
INHALT

SERVOPLUS® Metallbalgkupplungen	Seite
Beschreibung	61
Standard Ausführung	62
Kupplungsauswahl	63
Technische Eigenschaften	63
Montageanleitung	63
Sicherheitsnormen	63

SERVOPLUS® Metallbalgkupplungen

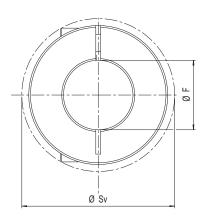

Beschreibung

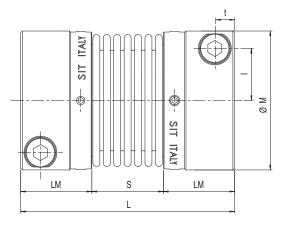
SERVOPLUS® Metallbalgkupplungen sind perfekt für alle Servomotor - Anwendungen geeignet, bei denen hohe Torsionssteifigkeit, spielfreie Drehmomentübertragung, geringe Massenträgheit und höchste Zuverlässigkeit gefordert ist. Das innovative Modulsystem ermöglicht schnelle Verfügbarkeit bei gleichzeitig günstigem Preisniveau.


Eigenschaften der SERVOPLUS® Metallbalgkupplungen:

- spielfrei zur exakten Übertragung höchster Drehmomente
- geringes Massenträgheitsmoment
- hervorragende dynamische Eigenschaften für hoch belastete, schnell laufende Antriebe mit Drehmomentumkehrung
- Ausgleich von Axial-, Radial- und Winkelabweichungen
- einfache Montierbarkeit

- große Verdrehsteifigkeit
- verschleiß- und wartungsfrei
- Einsatztemperatur bis + 300 °C
- innovativer, modularer Aufbau





SERVOPLUS® High Tech Metallbalgkupplungen

Das innovative Modulsystem ermöglicht schnelle Verfügbarkeit der unterschiedlichsten Nabenkombinationen bei wettbewerbsfähigen Preisen. Ein Austausch des Metallbalges ist sogar möglich ohne die Nabenenden von den Wellen zu entfernen.

Standardausführung

	Abmessungen [mm]								Schrauben				Ba schra	_	Technische Daten										
Туре								L	Туре	t		Ms	_	Ms	T _{KN}	T _{Kmax}	Nmax	5.40 616 21	Ст	axiale Federstei-	radiale Federstei- igkeit [N/mm]	zul. Abweichungen			W*
,	Bohrung		max	M	S _v	L _M	S					[Nm]	Type				[min-1]			figkeit [N/mm]		∆ka	Δkr	Δkw	[kg]
16	4,5	5	16	34	36	17	16,5	50,5	M4	4,5	12	2,9	МЗ	0,8	5	10	14000	14	3050	29	92	±0.5	0,2	1,5	0,082
20	7,5	8	20	40	44	20,5	21	62	M5	5,5	15	6	МЗ	0,8	15	30	11900	34	6600	42	126	±0.6	0,2	1,5	0,135
30	9,5	10	30	55	58	22,5	27	72	M6	6,5	20	10	M4	2	35	70	8700	140	14800	65	155	±0.8	0,25	2	0,289
38	13,5	14	38	65	73	26	32	84	M8	8	25	25	M4	2	65	130	7300	310	24900	72	212	±0.8	0,25	2	0,438
45	13,5	14	45	83	89	31	41	103	M10	9,5	30	49	M5	3,8	150	300	5800	1056	64000	88	492	±1,0	0,3	2	0,924

^{*=} mit Bohrungstoleranz F7

	SERVOPLUS® Kupplung																							
Time	Lieferbare Bohrungsdurchmesser und zugehörige übertragbare Reibmomente der Klemmnaben [Nm]																							
Type	5	6	7	8	9	10	11	12	14	15	16	18	19	20	24	25	28	30	32	35	38	40	42	45
16	4,9	5,9	6,9	7,8	8,8	9,8	10,8	11,8	13,7	14,7	15,7													
20				12,8	14,4	16	17,6	19,2	22,3	23,9	25,5	28,7	30,3	31,9										
30							24,9	27,1	31,7	33,9	36,2	40,7	43	45,2	54,3	56,5	63,3	67,9						
38												74,6	78,8	82,9	99,5	104	116	124	133	145	158			
45														132	158	165	184	198	211	231	250	263	277	296

auf Anfrage lieferbare Nabenausführungen:

- für SER Sit Taperbuchse
- konische Bohrungen für FANUC Motoren

Bestellbeispiel

M_S	Schraubenanzugsmoment	Nm
T_{KN}	Coupling nominal torqueNennmoment der Kupplung	Nm
T_{Kmax}	max. zul. Kupplungsmoment	Nm
n _{max}	max. zul. Drehzahl	min ⁻¹
C_T	Torsionssteifigkeit	Nm/rad
ΔK_a	max. zul. axiale Abweichung	mm
ΔK_r	max. zul. radiale Abweichung	mm
$\Delta K_{\rm w}$	max. zul. Winkelfehler	0
W	Masse	kg

Für die vollständige Zusammenstellung einer Kupplung wählen Sie zwei Naben mit Vor- oder Fertigbohrung und einen Metallbalg aus.

Kupplungsauswahl

Ermittlung des zu übertragenden Momentes:

Das von der Kupplung übertragbare Moment TKN muß immer größer sein als das maximal an der treibenden oder getriebenen Welle auftretende Moment.

Es bedeutet:

 T_{AS} = Spitzenmoment Motorseite (Nm) T_{LS} = Spitzenmoment Abtriebseite (Nm)

k = Betriebsfaktor

 $T_{KN} \ge k \cdot T_{AS/LS}$

Ermittlung des Beschleunigungsmoments

Ts = Beschleunigungsmoment (Antrieb- oder Abtriebseite) Das Nennmoment der Kupplung muß immer größer sein als das Beschleunigungsmoment.

 $T_{KN} > T_{S \cdot k}$

$$\begin{array}{ll} \textbf{Ts} & = T_{AS} \cdot m_A \\ \textbf{Ts} & = T_{LS} \cdot m_L \\ \\ \text{mit:} & m_A = \frac{J_A}{J_A + J_L} & m_L = \frac{J_L}{J_A + J_L} \end{array}$$

k = 1,5 bei gleichmäßiger Belastung

k = 2 bei ungleichmäßiger Belastung **k** = 2,5 - 4 bei Spitzen- oder Stoßbelastung

Antriebe in Werkzeugmaschinen: k = 1.5 - 2

Bei Anwendungen mit hohen Anforderungen an die Präzision kann es wichtig sein den Übertragungsfehler wie folgt zu ermitteln:

$$\beta = \frac{180 \cdot T_{AS}}{\pi \cdot C_{T}} \ \left[^{\circ} \right]$$

mit C_T = Torsionssteifigkeit der Kupplung [Nm/rad]

Ermittlung des Wellendurchmessers:

Nach Auswahl der Kupplung muß überprüft werden, ob die benötigten Wellendurchmesser zu der gewählten Kupplungsgröße passen. (Fmin/Fmax).

Überprüfung der Fluchtungsfehler:

Die auszugleichenden Fluchtungsfehler der jeweiligen Anwendung müssen zu den zulässigen Abweichungen der gewählten Kupplung passen. Es ist zu berücksichtigen, daß die maximal zulässigen Abweichungen der Kupplung nicht alle gleichzeitig ausgenutzt werden können. Die anteiligen Abweichungswerte der jeweiligen Anwendung dürfen in Summe 100% der zulässigen Werte der Kupplung nicht überschreiten.

$$\mbox{mit:} \quad \ \frac{\Delta k_{aM}}{\Delta k_{a}} \cdot 100\% \ + \ \frac{\Delta k_{rM}}{\Delta k_{r}} \cdot 100\% \ + \ \frac{\Delta k_{wM}}{\Delta k_{w}} \cdot 100\% \ < \ 100\%$$

- $\Delta k_a M$, $\Delta k_r M$, $\Delta k_w M$ bedeuten Axial-, Radial- und Winkelabweichung der Maschine oder Anwendung.
- $\Delta k_a,~\Delta k_r,~\Delta k_w$ bedeuten Axial-, Radial- und Winkelabweichung der Kupplung.
- Axialabweichungen: ergeben sich meist aus Temperaturschwankungen.
- Winkelabweichungen: Werte bis zu 2° sind zulässig.
- Radialabweichungen: der maximal zulässige Wert darf nicht überschritten werden. Ansonsten droht die Verformung des Metallbalges.

Überprüfung des übertragbaren Nabenmomentes:

Es muß überprüft werden, ob das benötigte Drehmoment des Antriebes von der Welle-Nabe-Verbindung sicher übertragen werden kann. Für besondere Anwendungen können unterschiedliche Verbindungssysteme geliefert werden. Ebenso sind Kupplungsnaben mit kleineren Bohrungen als im Katalog angegeben lieferbar. In solchen Fällen ist das übertragbare Moment der Nabe natürlich geringer als die Katalogwerte.

Technische Eigenschaften

Langlebigkeit

SERVOPLUS® Metallbalgkupplungen sind für eine unbegrenzte Anzahl von Umläufen ausgelegt, vorausgesetzt die maximal zulässigen Belastungswerte und die zulässigen Fluchtungsfehler werden nicht überschritten.

Spitzenlasten

SERVOPLUS® Metallbalgkupplungen er tragen kurzzeitig Spitzenmomente in Höhe des doppelten Nennmomentes, sofern die Welle-Nabe-Verbindung richtig ausgelegt ist.

Lagerbelastung

Durch die flexible Ausgleichung aller Arten von Fluchtungsfehlern reduzieren SERVOPLUS® Metallbalgkupplungen die Lagerbelastungen und somit auch die Wartungskosten der Maschine.

Einsatztemperatur

SERVOPLUS® Metallbalgkupplungen können ohne Einschränkungen bis + 300°C eingesetzt werden.

Wartung und Verschleiß / Montage

SERVOPLUS® Metallbalgkupplungen sind verschleiß- und wartungsfrei.

SERVOPLUS® Metallbalgkupplungen werden einbaufertig mit Fertigbohrung geliefert.

- Die Kontaktflächen sorgfältig säubern
- \bullet Kupplung auf die Wellenenden aufsetzen und die radialen Klemmschrauben schrittweise mit dem angegebenen Drehmoment T_{A} anziehen.

Ausbau

- Radiale Klemmschrauben lösen
- Antrieb entfernen und Kupplung ausbauen

Die innovative Konstruktion der SERVOPLUS® Metallbalgkupplungen ermöglicht den Ausbau der Kupplung oder den Austausch des Metallbalges ohne den gesamten Antrieb zu entfernen.

- Bundschrauben lösen
- Radiale Klemmschrauben lösen
- Klemmnaben auf den Wellenenden verschieben
- Metallbalg und Klemmnaben entfernen

Wellenqualität für sichere Momentübertragung:

- Durchmessertoleranz h6
- Oberflächenrauigkeit 16µ

ACHTUNG!

Bei der Montage und Demontage ist äußerst vorsichtig vorzugehen. Durch Beschädigung des Metallbalges kann die Kupplung unbrauchbar werden.

Sicherheitshinweis!

Alle rotierenden Teile müssen gegen unbeabsichtigte Berührung durch Personen geschützt sein. Der Schutz ist so auszuführen, daß selbst beim Bruch der Kupplung keine Gefahr für Personen oder Gerätschaften besteht.