

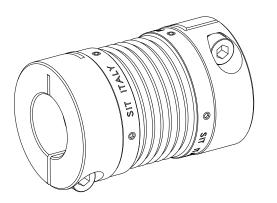
SERVOPLUS[®] Couplings

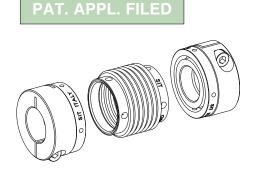
Contents

SERVOPLUS [®] Couplings	Page
Description	63
Standard execution	64
Coupling selection	65
Technical features	65
Mounting instructions	65
Safety norms	65

SERVOPLUS® couplings

Description

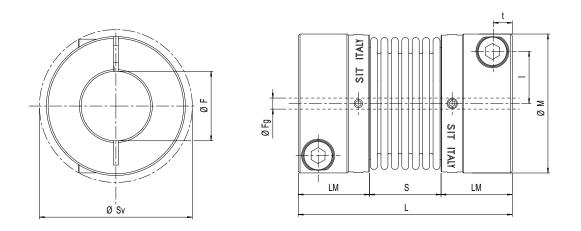

SERVOPLUS[®] bellows couplings are the perfect coupling in all servo motor applications where high torsional rigidity, truly backlash free torque transmission, low inertia, and superior


SERVOPLUS® couplings feature:

- backlash free for highest torque transmission precision
- · low moment of inertia
- excellent dynamic characteristics for superior drives at high speed and torque inversions
- allow for axial, radial and angular misalignment
- easy mounting

reliability are required. The innovative modular system allows quick delivery and competitive cost advantage. **Note:** It is possible to have aligned keyways upon inquiry.

- high torsional rigidity
- wear and maintenance free
- working temperature up to 300 °C
- innovative modular execution
- material: aluminum hub, bellow in stainless steel



SERVOPLUS® high tech bellows couplings

The innovative modular system allows competitive costs and very quick delivery for any shaft combination. Additional benefits include bellows replacement without moving shaft.

Standard execution

		Dimensions[mm]								Scre	ews			ocket set screws Technical data										
Size	Prebored	F	F									Ms	_	Ms	т _{кN}	nmax	Moment of	Torsional rigidity	Axial spring	Radial spring	Misa	alignm	ents	W*
	Fg	min	max	М	Sv	LM	S	L	Туре	t	I	[Nm]	Туре	[Nm]	[Nm]	Free in 11	inertia [x10 ⁻⁶ Kgm ²]	~ ·	stiffness [N/mm]	stiffness [N/mm]	∆ka	∆kr	∆kw	[kg]
16	4,5	5	16	34	36	17	16,5	50,5	M4	4,5	12	2,9	МЗ	0,8	5	14000	14	3050	29	92	±0.5	0,2	1,5	0,082
20	7,5	8	20	40	44	20,5	21	62	M5	5,5	15	6	МЗ	0,8	15	11900	34	6600	42	126	±0.6	0,2	1,5	0,135
30	9,5	10	30	55	58	22,5	27	72	M6	6,5	20	10	M4	2	35	8700	140	14800	65	155	±0.8	0,25	2	0,289
38	13,5	14	38	65	73	26	32	84	M8	8	25	25	M4	2	65	7300	310	24900	72	212	±0.8	0,25	2	0,438
45	13,5	14	45	83	89	31	41	103	M10	9,5	30	49	M5	3,8	150	5800	1056	64000	88	492	±1,0	0,3	2	0,924

*= with max bore Bore tolerance F7

										SE	RVOP	LUS®	coupli	ng										
Size								Bo	ore ran	ge and	damp	ening h	ub trai	nsmiss	ible tor	que [Ni	n]							
Size	5	6	7	8	9	10	11	12	14	15	16	18	19	20	24	25	28	30	32	35	38	40	42	45
16	4,9	5,9	6,9	7,8	8,8	9,8	10,8	11,8	13,7	14,7	15,7													
20				12,8	14,4	16	17,6	19,2	22,3	23,9	25,5	28,7	30,3	31,9										
30							24,9	27,1	31,7	33,9	36,2	40,7	43	45,2	54,3	56,5	63,3	67,9						
38												74,6	78,8	82,9	99,5	104	116	124	133	145	158			
45														132	158	165	184	198	211	231	250	263	277	296

Additional hub executions available upon request:

- taper bore for taper bushings
- conical bore for FANUC motors

Order form

Hub and Bellows	GSP	30	MF	20
GSP: SERVOPLUS® coupling				
Size				
M: hub with pilot bore				
S: bellows				
MF: hub with finished bore				
Bore diameter in mm (only in case	of hub with fini	shed bo	ore)	

Ms	Screw tightening torque	Nm
Τ _{κΝ}	Coupling nominal torque	Nm
n _{max}	Maximum rpm	min ⁻¹
CT	Torsional rigidity	Nm/rad
ΔK_a	Maximum axial misalignment	mm
ΔK_r	Maximum radial misalignment	mm
ΔK_w	Maximum angular misalignment	0
W	Weight	kg

To configure a complete coupling select two hubs with the requested pilot bore/finish bore and one bellows.

Coupling selection

Verify the torque to be transmitted

The torque transmissible by the coupling TKN must always be higher than the maximum torque applied to the driver and driven shaft.

Being:

T _{AS}	= peak torque of motor side (Nm)
T _{LS}	= peak torque of driven side (Nm)
k	= service factor

 $T_{KN} \ge k \cdot T_{AS/LS}$

Verify acceleration torque

Ts = acceleration torque (driver or driven side) The nominal torque must be higher than the acceleration torque.

 $T\kappa N > Ts \cdot k$

k = 1,5 with uniform load **k** = 2 with non-uniform load k = 2,5 - 4with peak or impact load

For drives in machine tools k = 1.5 - 2

For applications with extreme precision requirements it could be important to verify the transmission error which is calculated as follows:

 $\beta = \frac{180 \cdot T_{AS}}{\pi \cdot C_{T}} \left[^{\circ}\right]$

With C_T = torsional stiffness of the coupling [Nm/rad]

Verify shaft diameter

After having selected the coupling verify the required shaft diameters are compatible with the selected coupling size (Fmin/Fmax).

Verify misalignment

Misalignment in the application must be compatible with the allowable misalignment of the coupling. It must be considered that the maximum values of misalignment of the coupling cannot be reached simultaneously.

Given the values of misalignment of the application and converted in percentage with respect to the corresponding maximum values of the coupling, the percentage sum must not exceed 100%.

With:
$$\frac{\Delta k_{aM}}{\Delta k_{a}} \cdot 100\% + \frac{\Delta k_{rM}}{\Delta k_{r}} \cdot 100\% + \frac{\Delta k_{wM}}{\Delta k_{w}} \cdot 100\% < 100\%$$

- Δk_aM, Δk_rM, Δk_wM respectively axial, radial, and angular misalignment of the machine
- $\Delta k_a, \, \Delta k_r, \, \Delta k_w$ respectively axial, radial, and angular misalignment which the coupling can bear
- · axial misalignment: usually due to temperature variation
- angular misalignment: values up to 2° are acceptable · radial misalignment: pay close attention not to exceed maximum
- radial misalignment. It could bring to bellows distortion.

Verify hub transmissible torque

It is important to verify the torque required in the drive is compatible with the transmissible load of the hub-shaft connection. It is possible to deliver couplings with different clamping systems in case a special application is needed. Also it is possible to deliver couplings with minimum bore smaller than indicated in catalogue. In such a case, the hub shaft connection transmissible torque will be lower.

Technical features

Long lasting SERVOPLUS® couplings are designed for an infinite number of cycles when the maximum misalignment values and peak torque are respected.

Peak torque

SERVOPLUS® couplings allow for short periods a peak torque equal to the 1,5 time the nominal torque.

The hub shaft connection must be correctly dimensioned.

Bearing load

Due to flexibility in handling axial, angular and radial misalignment, SERVOPLUS® couplings allow reduced bearing load which reduces maintenance cost.

Working temperature

SERVOPLUS® couplings may be used up to 300° C without limitation.

Maintenance and wear

SERVOPLUS® couplings are wear and maintenance free.

Mounting instructions

SERVOPLUS® couplings are delivered with finished bore and ready for installation.

- · carefully clean the contact surfaces
- position the coupling on the shafts ends and carefully tighten the radial clamping screws to the indicated torque T_A

Dismounting

- · loosen radial screws
- · pull apart the drive and remove the coupling

The special design of the SERVOPLUS® coupling allows the removal of the coupling or the bellows replacement without pulling apart the drive.

- · loosen the socket screws
- · loosen the radial clamping screws
- · move the clamping hubs on the shafts
- remove the clamping hubs

Shaft requirements for a safe torque transmission are:

Note

It is recommended to pay careful attention during the mounting and dismounting operation. Damaging the bellows may render coupling unusable.

Safety norms

All rotating parts must be protected against any possibility of contact with people. Protection must be designed so that even in case of coupling failure, personnel and equipment is protected.